Interconnection Working Group

National Grid New England Energy Storage Schedules

Michael Porcaro, PE Director, DG Ombudsperson New England

March 17, 2022 national**grid**

Disclaimer

This presentation has been prepared solely as an aid to discussions for the purposes of today's meeting and should not be used for any other purposes. This presentation contains high-level, general information (not project specific) which may not be applicable in all circumstances. National Grid makes no guarantees of completeness, accuracy, or usefulness of this information, or warranties of any kind whatsoever, express or implied. National Grid assumes no responsibility or liability for any errors or omissions in the content. Nothing contained in this presentation shall constitute legal or business advice or counsel.

No party is authorized to modify this presentation.

The information in this presentation could be affected by future revisions to the Standards for Interconnection of Distributed Generation, M.P.D.U. No. **1468** (Tariff) and/or future revisions to National Grid's technical standards as documents in the company's Electric Service Bulletins.

New England

Massachusetts: DG Process Overview per MDPU 1468

Study Costs

- *MA avg study cost 2021 = \$20,500*
 - Does not include ASO or Group Study fees
- Tariff permitted 55BD

Energy Storage Systems

Different from other DER:

- Increased capability for dispatch/control as compared to other DG
- Ability to range from a load asset to a distribution asset
- Presents unique challenges to operational and planning activities

Challenges:

- Capacity reservation: National Grid must be prepared for worstcase system conditions, preparing for ESS to act as full-load or full-generation at any time
 - Day-to-Day Operation: Can limit Control Center flexibility in system switching for restoration efforts or planned outages
 - Planning: Similar limitations for area reconfiguration opportunities, leading more quickly to infrastructure investment

Massachusetts Online Hosting Capacity Map

~300MW in Group Studies ~190MW of which are stand alone ESS

Capacity Reservation: *"Filling Up" Feeders*

ESS as Generation (Discharge Scenario)

Values

- Load + ESS
- Fdr Fwd Limit
- Fdr Rev Limit
- Load

Effects:

•

- Long term \rightarrow Planning Available feeder and substation capacity reduced, more quickly leading to need for infrastructure investment
 - Affects DG customers directly through cost obligation from Impact Studies
 - Affects all customers through long term planning
- Day to Day \rightarrow Control Center Available capacity for switching

Capacity Reservation: Switching Example

- Near term \rightarrow Control Center Day to day switching and operational flexibility can be limited
- Long term → Planning Available feeder and substation capacity reduced, more quickly leading to need for infrastructure investment
 - Affects DG customers directly through cost obligation from Impact Studies
- March 17, 2022 Affects all customers through long term planning

Schedule

24-Hour Schedule

- Predictability and certainty in load/generation behavior
- Generally aligning to have ESS act as "reducer"
- Slows "feeder filling" challenges degree of relief on planning and dayto-day system management
- More efficient use of available system capacity overall enabling more projects (qty and MW) online
- Curtailment analysis to identify the threshold level at which thermal impacts require system modifications

Pros

- More manageable integration
- More efficient use of available capacity
- Slower to large infrastructure upgrades

Cons

- Reduced opportunity for ROI from various markets
- ISA ability to adjust schedules in the future

National Grid Charge/Discharge Windows

	Charge	Discharge
	Window	Window
Spring	11PM-5PM	5PM-11PM
Summer	11PM-3PM	3PM-11PM
Fall	11PM-4PM	4PM-11PM
Winter	11PM-3PM	3PM-11PM

National Grid Charge/Discharge Windows			
	Charge	Discharge	
	Window	Window	
Spring	11PM-5PM	5PM-11PM	
Summer	11PM-3PM	3PM-11PM	
Fall	11PM-4PM	4PM-11PM	
Winter	11PM-3PM	3PM-11PM	

Study Considerations

9

National Grid Charge/Discharge Windows			
	Charge	Discharge	
	Window	Window	
Spring	11PM-5PM	5PM-11PM	
Summer	11PM-3PM	3PM-11PM	
Fall	11PM-4PM	4PM-11PM	
Winter	11PM-3PM	3PM-11PM	

Study Considerations

Final Thoughts

Pay to Upgrade

- Based on historic study results, we have seen projects unable to move forward with high system mod costs, which could be the case with unconstrained
- Studying unconstrained with high cost system mod results could reduce overall DG enablement

Contingency scenarios

- Unconstrained, due to unpredictability and need for swift action, customers can expect to be off for duration
- Similar for planned switching, possibility for affected customer to pay for study for alternatives
 - But alternatives may not be available depending on existing system conditions

Schedules Don't Eliminate Challenges

- Schedules enable efficient use of available capacity, enabling more projects per MW
- High penetrated areas will still see need for high scale infrastructure investment