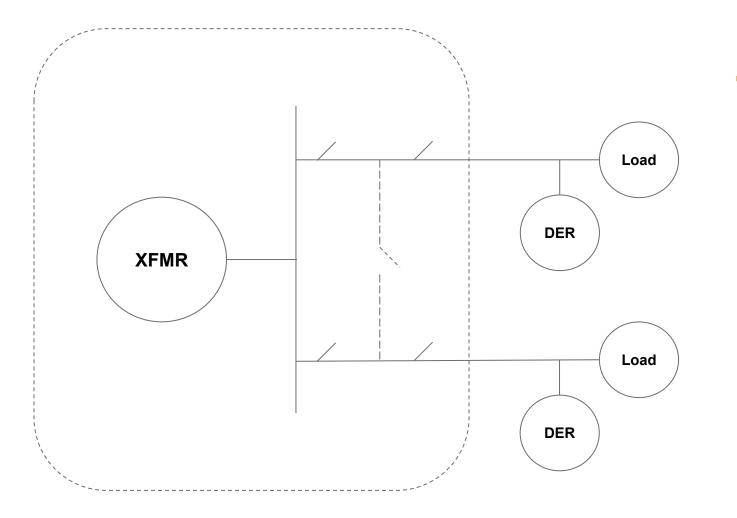
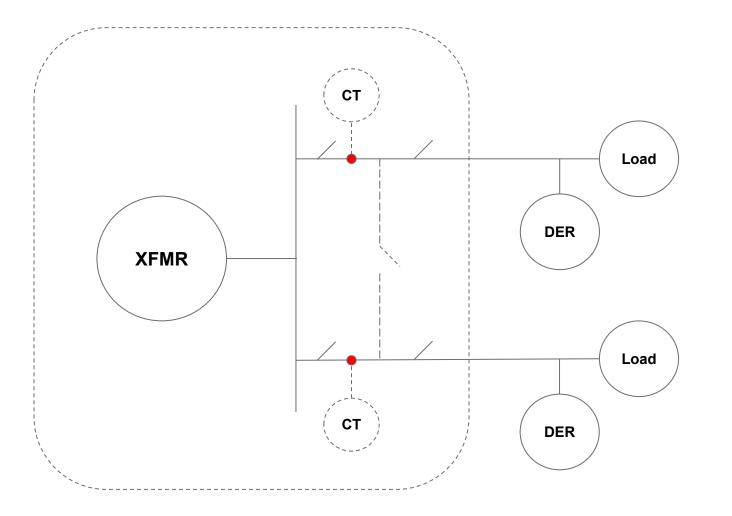


Ensuring Operational Reliability While Enabling DER Penetration

By: Shay Banton Date: 4/7/2020

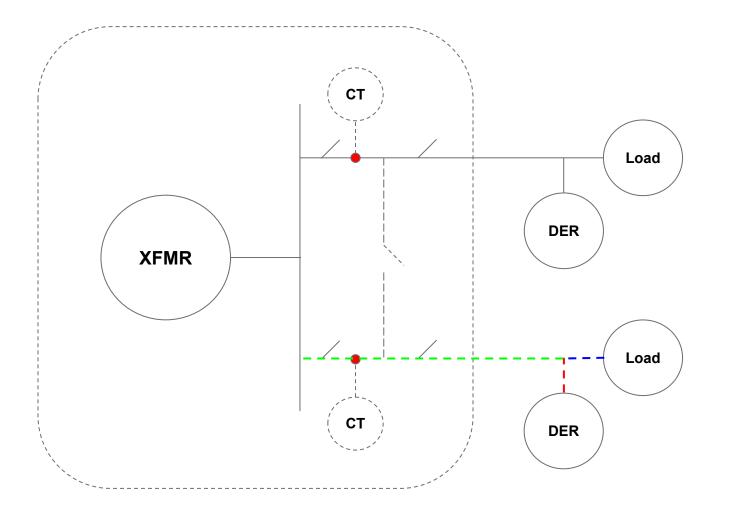

- Industry Interpretation of PSEG-LI Approach
- Constraints Due to Approach
- Diagrammatic Explanation
- Industry Concerns
- Approaches by Other Utilities
- Industry Recommendations

Industry Interpretation of PSEG-LI Approach - System Constraints

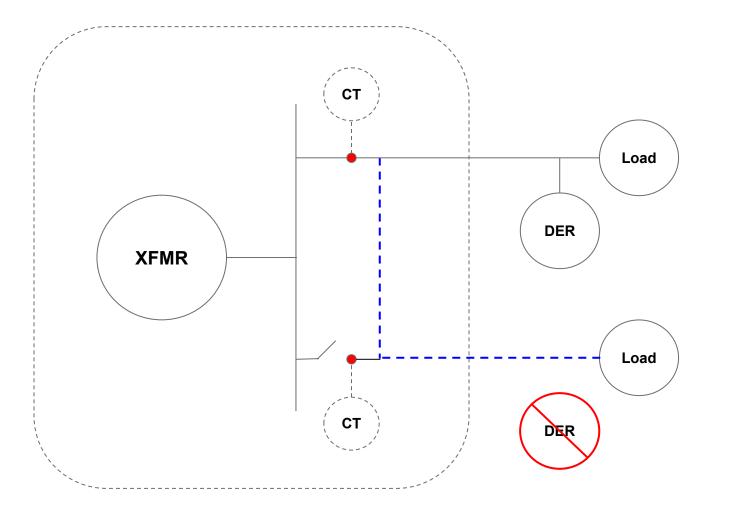

- Circuit Operational Constraints Limit Amount of DER Allowed to Interconnect to Existing Infrastructure
 - PSEG-LI concerned about load masking caused by excessive generation when Operations team is looking into possible contingency scenarios
- Maximum of 3MW of Aggregate DER Allowed on Feeders
 - Anything more will require an express feeder to interconnect
 - Threshold calculated using typical circuit thresholds described in next slides

Industry Interpretation of PSEG-LI Approach - Diagram Walkthrough of PSEG-LI Concerns

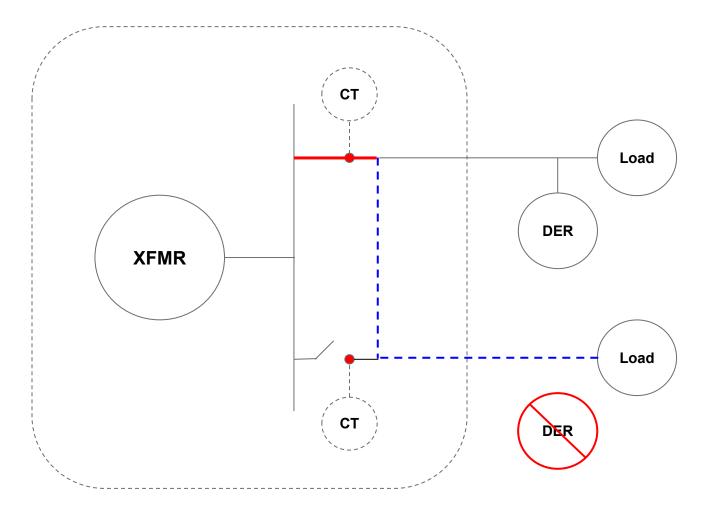
 Simplified distribution substation with transfer switch for feeder contingency conditions


Industry Interpretation of PSEG-LI Approach - Diagram Walkthrough of PSEG-LI Concerns

 Simplified distribution substation with transfer switch for feeder contingency conditions


 Current Transformers at each feeder head so that the Operations team can monitor load

Industry Interpretation of PSEG-LI Approach - Diagram Walkthrough of PSEG-LI Concerns


- Simplified distribution substation with transfer switch for feeder contingency conditions
- Current Transformers at each feeder head so that the Operations team can monitor load
- When DER is operating, Operations team can only see load that is masked by DER output

Industry Interpretation of PSEG-LI Approach - Diagram Walkthrough of PSEG-LI Concerns

- Simplified distribution substation with transfer switch for feeder contingency conditions
- Current Transformers at each feeder head so that the Operations team can monitor load
- When DER is operating, Operations team can only see load that is masked by DER output
- Then, when switching into a contingency condition when the DER is offline, the Operators are assuming there is less load than what is actually on the feeder

Industry Interpretation of PSEG-LI Approach - Diagram Walkthrough of PSEG-LI Concerns

- Simplified distribution substation with transfer switch for feeder contingency conditions
- Current Transformers at each feeder head so that the Operations team can monitor load
- When DER is operating, Operations team can only see load that is masked by DER output
- Then, when switching into a contingency condition when the DER is offline, the Operators are assuming there is less load than what is actually on the feeder
- This could lead to thermal overloads on the adjacent feeder due to there being higher load than what the Operator was expecting

Industry Concerns with PSEG-LI Practice

- Alternative Solutions Provided by PSEG-LI make Projects Infeasible

- Express Feeder Solution Cost can be in excess of \$2 Million. No project can absorb that much for just cost to interconnection
- Downsizing Solution Requires projects to downsize to a small percentage of their original system size making them infeasible. (Ex. 5 MW to 500 kW)
- Extension to Different Feeder Solution In some cases, PSEG-LI has suggested developers attempt to interconnect to a different circuit from the one adjacent to their site. These circuits
 are typically very far from the proposed POI and are likely cost prohibitive

Based on NYSEIA Member Experience, No Other Utilities in Advanced DER Markets Apply This Methodology, Including

- None of the members of the Joint Utilities of New York apply this methodology to their circuits
- No Massachusetts Utilities apply this methodology
- No California Utilities apply this methodology
- No Maine Utilities apply this methodology
- Technical Solution to This Concern Has Been Available and In Use for Years
 - All the utilities mentioned above have found technical solutions to this concern
 - Substation and Feeder-Head backfeeding has been allowed in some utility territories for over 5 years
- The Limitations on DER This Methodology Imposes Are Misaligned with New York State's Renewable Energy Goals

Current Practices by Other Utilities

- For Large Projects (1 MW+)
 - Utilities require SCADA site monitoring to provide real-time data to their Operations team
 - Operations team, or automated software, reviews output data for DER to determine amount of load masking prior to switching to contingency
- For Medium Projects (500 kW+)
 - Utility dependent approach to medium sized DER
 - Some Utilities require real-time monitoring data for medium projects
 - Other Utilities modify review process for Operations team and always assume medium DERs are operating at full capacity when making contingency decisions

For Small Projects (<500 kW)

- Track aggregate number of small DER and assume they are operating at full capacity with maximum load masking when making contingency decisions
- Some Utilities are looking into low-cost monitoring and control solutions for small DER, however, this is primarily concerned with advanced inverter functions and active curtailment, not substation backfeeding

Industry Recommendations

PSEG-LI Adopt the Practices Utilized by Other Utilities to Mitigate Backfeeding Concern

- Use SCADA site monitoring for large systems to provide real-time generation data to their Operations team
- Track aggregate Medium and Small DERs to determine circuit specific constant load-masking assumptions
- Apply New Methodology to Projects In or Already Through the Interconnection Process
 - Backtrack to ensure all projects currently queued or already evaluated can be restudied assuming the new mitigation is in place
- Revise Hosting Capacity Maps to Account for Increased Capacity Derived from Methodology Change